Импульсные лазерные диоды и лавинные фотодиоды для промышленных и коммерческих применений
Использование импульсных лазерных диодов и лавинных фотодиодов позволяет быстро, точно и бесконтактно измерить расстояние в различных оптоэлектронных применениях. В зависимости от требований к производительности и сроку службы системы в качестве излучателя могут использоваться как одноэлементные, так и многоэлементные импульсные лазерные диоды (стеки), в то время как в качестве фотоприемника применяются лавинные фотодиоды разной внутренней структуры.
Импульсные лазерные диоды и лавинные фотодиоды берут свое начало в военных применениях. Благодаря пиковой мощности импульсных лазерных диодов более 200 Вт и высокой чувствительности лавинных фотодиодов они идеально подходят для дальнометрии основанной на «времяпролетном» методе. Развитие технологии и уменьшение себестоимости открыли для данных устройств новые области промышленных, коммерческих и автомобильных применений.
Импульсные лазерные диоды
Большинство лазерных диодов предназначены для работы в режиме непрерывного излучения с мощностью от нескольких мВт до нескольких Вт. Такие лазерные диоды нельзя перегружать, т.к. если напряжение питания будет превышено даже на короткое время, резонатор лазера может выйти из строя, и как следствие излучение прекратится.
Импульсные лазерные диоды, в свою очередь, предназначены для перегрузки по питанию на короткие промежутки времени. Для достижения максимальной пиковой мощности необходимой для конкретного применения, коэффициент заполнения может принимать очень маленькие значения, обычно он составляет 0,1%. Например, после импульса длительностью 100 нс идет пауза 100 мс, это означает, что очень короткие импульсы могут идти с частотой следования на уровне кГц. Максимальная длительность импульса находится на уровне нескольких сотен нс. Для получения таких импульсов лазерные токи могут достигать уровня нескольких десятков ампер, что требует применения быстро переключающихся транзисторов и подходящей схемы с минимально допустимыми электрическими соединениями для снижения индукционных потерь.
Рис.1. Импульсные лазерные диоды и лавинные фотодиоды фирмы Laser Components в различных вариантах корпусов.
Важным критерием для выбора лазерных диодов является длина волны излучения. В первую очередь она зависит от материала активного и пассивного слоя полупроводника. Для большинства коммерческих применений доступны следующие длины волн излучения - 850-870 нм, 905 нм, 1550 нм. Структура AlGaAs лазеров на 905 нм широко известна за свою надежность, качество пучка и температурную стабильность. Высокая эффективность (порядка 1 Вт/А) позволяет получить пиковую мощность до 40 Вт с одного эмиттера и до 220 Вт с многоэлементного (несколько эмиттеров - стэковый) лазерного диода при длительности импульса 100 нс. При меньше длительности импульса достижима пиковая мощность более 500 Вт. Преимуществом длины волны излучения 905 нм является то, что максимум спектральной чувствительности кремниевых лавинных фотодиодов как раз лежит в этой области. Лазерные диоды с длиной волны, лежащей в средней ИК области - 1550 нм, доступны с более высокой выходной мощностью по сравнению с диодами на 905 нм, тем не менее они также безопасны для человеческого глаза ввиду того, что излучение не фокусируется непосредственно на сетчатку.
Лазерные диоды на 1550 нм основаны на материале InP с дополнительными слоями InGaAs, которые можно получить как путем молекулярно-лучевой эпитаксии, так и путем осаждения металлорганических соединений из паровой фазы. Благодаря эффективности на уровне 0,35 Вт/A выходная пиковая мощность излучения многоэлементных лазерных диодов может достигать 50 Вт при длительности импульса 150 нс. Из-за необходимости использования теплоотвода эти лазерные диоды в большинстве своем доступны в корпусе 9-мм и TO-18, в то время как импульсные лазерные диоды с длинами волн 850-870 нм и 905 нм также доступны в недорогих пластиковых корпусах.
Наряду с длиной волны излучения и электрооптическими характеристиками, надежность является еще одним важным критерием при выборе прибора. Как и для большинства источников излучения, особенно это касается полупроводниковых лазеров, срок службы импульсных лазерных диодов сильно зависит от условий эксплуатации. Лазерные диоды могут подвергаться значительному перенапряжению на короткие промежутки времени, а также уменьшению энергии импульса за счет сокращения длительности импульса до единиц нс без угрозы повреждения. Пользователь должен выбирать подходящий лазерный диод и настройку драйвера исходя из требований применения и необходимого срока службы устройства. В то время как для некоторых военных применений требуемый срок службы лазерного диода может составлять менее часа, например, в тиристорном зажигании, для таких применений как промышленный сканер безопасности, работающий круглосуточно, надежность диода должна составлять десятки тысяч часов.
Многолетний опыт в области работы с импульсными лазерными диодами помог составить формулу средней наработки на отказ в качестве функции нескольких характеристик:
MTTF = k · (P/L)-6 · tw-2 · F-1 · f(T),
где MTTF – средняя наработка на отказ в часах, k – константа, зависящая от материала, которая составляет 1.14 · 1020 для импульсного лазерного диода фирмы Laser Components с длиной волны излучения 905 нм, P – выходная оптическая мощность в мВт, L – длина эмиттера в мм, tw – длительность импульса в нс, F – частота следования импульсов в кГц, f(T) – температурно-зависимый коэффициент усиления (равен 1 при 25°С).
Лавинные фотодиоды
Для распознавания коротких импульсов лазерных диодов измерительные системы используют как PIN фотодиоды, так и лавинные фотодиоды (ЛФД) в качестве фотоприемника. Срок службы данных компонентов не столь важен, т.к. при правильной эксплуатации они могут работать практически вечно. В обычных фотодиодах поступающие фотоны образуют электронно-дырочные пары, также называемые носителями заряда, что в свою очередь отражается на измеряемом фототоке. Мощность регистрируемых фотонов преобразуется в электрическую энергию. В данном случае лавинные фотодиоды пошли гораздо дальше. Лавинные фотодиоды отличаются от «обычных» PIN фотодиодов тем, что регистрируемые фотоны внутри фотодиода вызывают лавину зарядов. Она возникает вследствие приложения к лавинному фотодиоду обратно смещённого напряжения для расширения слоя поглощения «А». В лавинных фотодиодах носители заряда, высвобожденные светом, ускоряются в электрическом поле таким образом, что образуют дополнительные электронно-дырочные пары за счет ударной ионизации. Если напряжение обратного смещения ниже, чем напряжение пробоя, лавина утихнет из-за потери на трение внутри полупроводника. Таким образом единичный фотон может возбудить сотни или даже тысячи электронов. При напряжении выше напряжения пробоя ускорение носителей заряда находится на достаточном уровне для поддержания лавины. Единичный фотон может генерировать постоянный ток, который, в свою очередь, можно измерить внешним электронным оборудованием. Сгенерированный ток рассчитывается следующим образом:
I = R0 · M · Ps ,
где R0 (А/Вт) – это спектральная чувствительность лавинного фотодиода, М – это внутренний коэффициент усиления, Ps (Вт) – оптическая мощность падающего излучения. Коэффициент усиления лавинного фотодиода зависит от приложенного напряжения обратного смещения (см. рис. 2).
Рис. 2. Типовая зависимость коэффициента усиления от рабочего напряжения для кремниевых лавинных фотодиодов при разных температурах, где активная область D = 500 мкм.
Наиболее важными параметрами лавинного фотодиода, которые необходимо учитывать при выборе, являются - спектральный диапазон, размер активной области, внутренние шумы и полоса пропускания. Лавинные фотодиоды доступны в спектральном диапазоне от 300 нм до 1700 нм. Кремниевые лавинные фотодиоды, в зависимости от их структуры, подходят для диапазона от 300 нм до 1100 нм, германиевые фотодиоды от 800 нм до 1600 нм, фотодиоды на основе InGaAs от 900 нм до 1700 нм. Кремниевые лавинные фотодиоды представлены наибольшим количеством моделей. Для конкретных применений возможно получение специальных параметров лавинных фотодиодов в зависимости от процесса изготовления. Обзор наиболее важных параметров представлен в Таблице 1.
Таблица 2 - Сравнительный обзор различных структур и характеристик кремниевых лавинных фотодиодов
Типы кремниевых лавинных фотодиодов |
Со скошенным краем |
Эпитаксиальный |
Сквозной |
Структура |
|
|
|
Область «поглощения» |
большая |
малая |
средняя |
Область «умножения» |
большая |
малая |
малая |
Типовой размер (диаметр) |
до 16 мм |
до 5 мм |
до 5 мм |
Коэффициент усиления |
от 50 до 1000 |
от 1 до 1000 |
от 10 до 300 |
Фактор «избыточного шума» |
очень хороший |
хороший |
от хорошего до очень хорошего |
|
(k = 0.0015) |
(k = 0.03) |
(k = 0.02 до 0.002) |
Рабочее напряжение |
от 500 до 2000 В |
от 80 до 300 В |
от 150 до 500 В |
Время нарастания |
медленное |
быстрое |
быстрое |
Емкость |
малая |
большая |
малая |
Чувствительность к синему спектру (400 нм) |
хорошая |
слабая |
слабая |
Чувствительность к красному спектру (650 нм) |
хорошая |
хорошая |
хорошая |
Чувствительность в ближнем ИК спектре (905 нм) |
очень хорошая |
хорошая |
очень хорошая |
По сравнению с германиевыми лавинными фотодиодами лавинные фотодиоды на основе InGaAs имеют значительно меньшие шумы, более широкую полосу пропускания относительно активной области и расширенную спектральную чувствительность до 1700 нм. Как бы то ни было, лавинные фотодиоды на основе InGaAs имеют один недостаток - они дороже германиевых лавинных фотодиодов. Германиевые лавинные фотодиоды в первую очередь рекомендуется использовать в недорогих применениях или в системах подвергающихся электромагнитному воздействию, и в которых вторичный шум усилителя значительно выше. Очевидно, что лавинные фотодиоды с меньшей активной областью имеют меньшую стоимость по сравнению с детекторами с большой активной областью, т.к. в этом случае при производстве чипов на одной пластине изготавливается большее количество изделий. Поэтому в первую очередь необходимо определить минимально допустимую активную область для получения оптической структуры. Иногда более предпочтительными в использовании могут оказаться лавинные фотодиоды с большей активной областью, т.к. специальная оптика, фокусирующая излучение на малую активную область может быть дороже чем использование детектора с первоначально большей активной областью. Для сравнения эффективности лавинных и PIN фотодиодов недостаточно просто сравнить шумовые характеристики детекторов. Решающее значение имеет отношение сигнал-шум всей системы. В случае с PIN фотодиодами необходимо также учитывать соответствующий предусилитель. Его шумовые характеристики, помимо всего прочего, зависят от частоты. Лавинные фотодиоды превосходят PIN фотодиоды, т.к. они могут значительно увеличить уровень сигнала без серьезного увеличения шумов всей системы. Таким образом, ЛФД предпочтительно использовать там, где необходимо регистрировать световой сигнал низкой интенсивности на средних или высоких частотах. Оптимальный внутренний коэффициент усиления выбирается тогда, когда шум детектора приблизительно равен входному шуму вторичного усилителя (или сопротивлению нагрузки). В таком случае лавинный фотодиод не влияет на шум системы. Независимо от того какой детектор используется, лавинный или PIN фотодиод, шум увеличивается пропорционально пропускной способности системы. Следовательно, очень важно уменьшить пропускную способность настолько, на сколько это практически возможно.
Применения
Самое распространенное применение оптопары в виде импульсного лазерного диода + лавинного фотодиода — это дальнометрия, основанная на «времяпролетном» методе. Один из вариантов применения – измеритель скорости автомобиля. Используя импульсы длительностью в несколько нс и мощностью в десятки Вт, можно легко измерить скорость транспортного средства, движущегося со скоростью до 250 км/ч. Расстояние между лазерным устройством измерения скорости (будь то базовая станция или полицейский с ручным измерителем скорости) и движущимся транспортным средством может достигать 1000 м. Точность таких измерений лежит в пределах 1-3%.
Охотники используют безопасные для глаза дальномеры для определения расстояния до цели. Ни оленю, в которого целится охотник, ни кому-либо другому, находящемуся рядом не стоит беспокоиться о своем зрении. В этом случае лазерный дальномер первого класса предоставляет точную информацию в течение 1 секунды с точностью до 2 м на расстоянии 600 м. Также данные полученные с помощью дальномера используются в гольфе для улучшения результатов игрока, или в автомобилестроении для предупреждения об опасном приближении к препятствию или впереди идущему автомобилю (рис. 3).
Рис. 3. Измерение расстояния и относительной скорости в автомобильной промышленности с использованием импульсных лазерных диодов и лавинных фотодиодов.
Лазерные устройства детектирования также широко используются в навигационных целях для кораблей, в особенности в портах и гаванях, для измерения высоты облаков в аэропортах, а также в области геодезии и строительства, когда необходимо провести обмеры карьера или отвала, измерить высоту зданий, деревьев или других объектов. Лазерные сканеры безопасности, построенные на импульсных лазерных диодах и высокочувствительных лавинных фотодиодах, создают завесу лазерного излучения, которая регистрирует наличие человека или объекта в потенциально опасных областях, например, на автоматизированной производственной линии (рис. 4).
Рис. 4. Лазерные сканеры безопасности, создают завесу лазерного излучения, которая регистрирует наличие человека или объекта в потенциально опасных областях.
Выводы
Импульсные лазерные диоды и лавинные фотодиоды идеально подходят для применений связанных с дальнометрией. Комбинации различных длин волн и мощности излучателя найдут соответствующие оптимальные аналоги среди различных структур лавинных фотодиодов исходя из требований применения. Прогресс в области производства открыл возможности для ряда новых коммерческих и промышленных применений.