SG01Q-5 Broadband SiC based UV quadrant photodiode $A = 4 \times 1.4 \text{ mm}^2$

GENERAL FEATURES

- Broadband UVA+UVB+UVC, PTB reported high chip stability
- Active Area A = $4 \times 1.4 \text{ mm}^2$, $32 \mu \text{m}$ pitch
- Designed for UV laser beam adjustment applications, autocollimators and other UV beam position detection applications
- TO5 hermetically sealed metal housing, short cap, common cathode
- 10μ W/cm² peak radiation results a current of approx. 18 nA / pixel

About the material Silicon Carbide (SiC)

SiC provides the unique property of extreme radiation hardness, near-perfect visible blindness, low dark current, high speed and low noise. These features make SiC the best available material for visible blind semiconductor UV detectors. The SiC detectors can be permanently operated at up to 170° C (338° F). The temperature coefficient of signal (responsivity) is also low, < 0.1%/K. Because of the low noise (dark current in the fA range), very low UV radiation intensities can be measured reliably. Please note that this device needs an appropriate amplifier (see typical circuit on page 3).

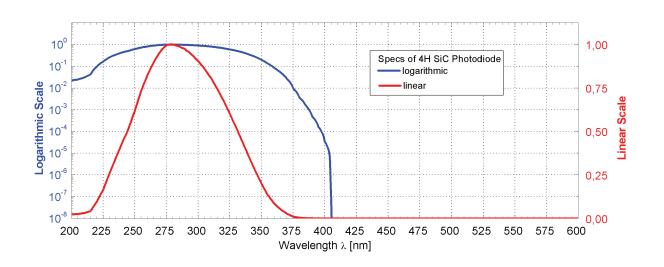
Options

This photodiode is also available as a filtered version (UVA, UVB or UVC) to tighten the sensitivy range.

sgLux GmbH | Max-Planck-Str. 3 | D–12489 Berlin | Tel. +49 30 5301 5211 | welcome@sglux.de | www.sglux.de

Rev. 6.0 Due to our strive for continuous improvement, specifications are subject to change within our PCN policy according to JESD46C.

SG01Q-5
Broadband SiC based UV quadrant photodiode $A = 4 \times 1.4 \text{ mm}^2$

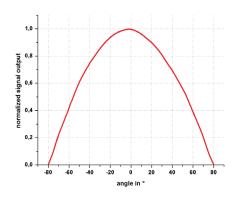


2/4

SPECIFICATIONS

Parameter	Symbol	Value	Unit
Spectral Characteristics			
Typical Responsivity at Peak Wavelength	S _{max}	0.130	AW ⁻¹
Wavelength of max. Spectral Responsivity	λ_{max}	280	nm
Responsivity Range (S=0.1*S _{max})	_	221 358	nm
Visible Blindness (S _{max} /S _{>405nm})	VB	> 10 ¹⁰	-
General Characteristics (T=25°C)			
Active Area	А	4 X 1.4	mm²
Dark Current (1V reverse bias)	ld	47	fA
Capacitance	С	350	pF
Short Circuit (10µW/cm² at peak)	lo	18	nA/pixel
Temperature Coefficient	Tc	< 0.1	%/K
Maximum Ratings			
Operating Temperature	Topt	-55 +170	°C
Storage Temperature	T_{stor}	-55 +170	°C
Soldering Temperature (3s)	T_{sold}	260	°C
Reverse Voltage	V_{Rmax}	20	V

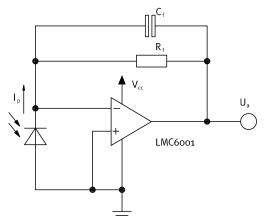
NORMALIZED SPECTRAL RESPONSIVITY


sgLux GmbH | Max-Planck-Str. 3 | D-12489 Berlin | Tel. +49 30 5301 5211 | welcome@sglux.de | www.sglux.de

Rev. 6.0 Due to our strive for continuous improvement, specifications are subject to change within our PCN policy according to JESD46C.

SG01Q-5 Broadband SiC based UV quadrant photodiode $A = 4 \times 1.4 \text{ mm}^2$

FIELD OF VIEW



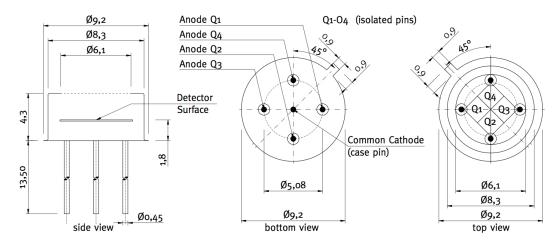
Measurement Setup:

lamp aperture diameter: 10 mm distance lamp aperture to second aperture: 17 mm second aperture diameter: 10 mm distance second aperture to detector: 93 mm

pivot level = top surface of the photodiode window

Calculations and Limits: $U_a = I_p x \ R_f = o \ ... \ \sim \ V_{cc}$

U_{a,max} depends on load and amplifier type


$$\begin{split} R_f &= 10 k \Omega \ ... \ \sim \ 10 G \Omega, \ C_f \geq 3 p F \\ Recommendation: \ R_f x \ C_f \geq 10^{-3} s \\ I_{p,max} &= U_{a,max} \ \div \ R_f \end{split}$$

Bandwidth = DC ...

$$\frac{1}{2\pi \times R_f \times C_f}$$

Example: I_p = 20nA, R_r =100M Ω , C_r =100 pF U_a = 20 x 10⁹A x 100 x 10⁶ Ω = 2V

DRAWINGS

sgLux GmbH | Max-Planck-Str. 3 | D-12489 Berlin | Tel. +49 30 5301 5211 | welcome@sglux.de | www.sglux.de

Rev. 6.0 Due to our strive for continuous improvement, specifications are subject to change within our PCN policy according to JESD46C.

3/4

SG01Q-5 Broadband SiC based UV quadrant photodiode $A = 4 \times 1.4 \text{ mm}^2$

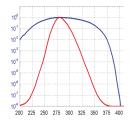
APPLICATION NOTE FOR PHOTODIODES

For correct reading of the photodiode the current (and NOT the voltage) must be analyzed. This requires a short circuiting of the photodiode. Usual approaches are using a **Picoamperemeter** or a **transimpedance amplifier** circuit as shown on page 3.

UPGRADE TO A TOCON OR A PROBE

- **TOCONs = UV sensors with integrated amplifier**
- SiC based UV hybrid detector with amplifier (o-5V output), no additional amplifier needed, direct connection to controller, voltmeter, etc.
- \bullet Measures intensities from 1.8 pW/cm² up to 18 W/cm²
- UV broadband, UVA, UVB, UVC or Erythema measurements

Miniature housing with M12x1 thread for the TOCON series


- Optional feature for all TOCON detectors
- Robust stainless steel M12x1 thread body
- Integrated sensor connector (Binder 4-Pin plug) with 2m connector cable
- Easy to mount and connect

Industrial UV probes

- Different housings e.g. with cosine response, water pressure proof or sapphire windows
- Different electronic outputs configurable (voltage, current, USB, CAN)
 - Good EMC safety for industrial applications

CALIBRATION SERVICE

- Different NIST and PTB traceable calibrations and measurements for all sglux sensors
- Calibration of sensors for irradiation measurements
- Calibration of UV sensors on discrete wavelengths
- Determination of a specific spectral sensor responsivity

sgLux GmbH | Max-Planck-Str. 3 | D-12489 Berlin | Tel. +49 30 5301 5211 | welcome@sglux.de | www.sglux.de