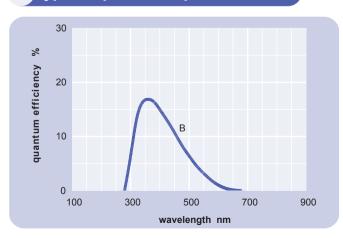
51 mm (2") photomultiplier 9727B series data sheet

1 description

The 9727B is a 51mm (2") diameter, end window photomultiplier with high temperature bialkali photocathode and 13 BeCu dynodes of the long-established venetian blind design providing a low afterpulse rate.

2 applications

- oil well logging
- high temperature applications


3 features

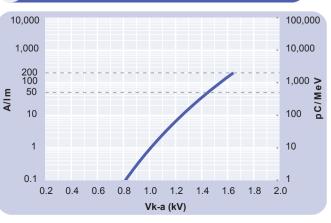
- will operate up to 150 °C
- tarnish-free gold plated base pins

4 window characteristics

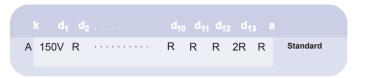
	9727B borosilicate
spectral range*(nm) refractive index (nd)	290 - 630 1.49
K (ppm) Th (ppb) U (ppb)	300 250 100

* wavelength range over which quantum efficiency exceeds

5 typical spectral response curve

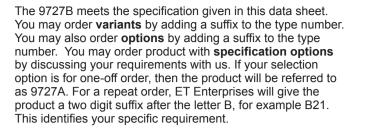

6 characteristics

mm % µA/Im	4	46 17 50 6 5	
A/Im A/Im V V		50 200 1450 1700	1900
x 10 ⁶ nA nA :		1 0.5 2	5
mΑ μΑ		4 1	
$T \times 10^{-4}$		1.4	
% °C '		± 0.5	
ns ns ns g		10 22 65 190	
μА			100
'nA			100
x 10 ⁶ A/Im °C V V V	-55		4 200 150 2300 300 300 202
	% μA/Im A/Im A/Im V V x 10 ⁶ nA nA μA T x 10 ⁻⁴ % °C ⁻¹ ns ns g μA nA x 10 ⁶ A/Im C V V	% μA/lm A/lm X 10 ⁶ nA nA mA μA T x 10 ⁻⁴ % °C ⁻¹ ns ns g μA x 10 ⁶ -55 V V V	$ \begin{array}{c} \label{eq:posterior} & & 17 \\ 50 \\ 6 \\ 5 \\ \end{array} \\ \begin{array}{c} A/lm \\ A/lm \\ A/lm \\ V \\ V \\ V \\ V \\ 1700 \\ 1450 \\ 1700 \\ 1450 \\ 1700 \\ 1450 \\ 1700 \\ 1450 \\ 1700 \\ 1450 \\ 1700 \\ 1450 \\ 1700 \\ 1450 \\ 1700 \\ 1450 \\ 1450 \\ 1700 \\ 1450 \\ 1450 \\ 1700 \\ 145$


⁽¹⁾ subject to not exceeding max. rated sensitivity ⁽²⁾ subject to not exceeding max rated V(k-a)

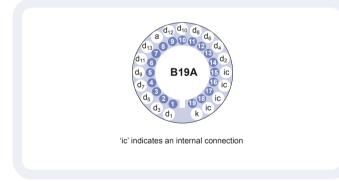
operating voltage for 50 pC/MeV pulse height resolution ⁽³⁾	V %	1200 9	1300 12	-

⁽³⁾measured with ¹³⁷Cs/Nal(TI) crystal


7 typical voltage gain characteristics

9 external dimensions mm

8



ordering information

11`

		9727	
options	·		
M	supplied with spectral response calibration		
specific	cation options		
B	as given in data sheet		
Α	single order to		
	selected specification		
Bnn	repeat order to		
	selected specification		

10 base configuration (viewed from below)

Our range of B19A sockets, available for this series, includes versions with or without a mounting flange, and versions with contacts for mounting directly onto printed circuit boards.

12 voltage dividers

The voltage divider available for this pmt is tabulated below:

C679E*	2R	R	 R R	
C679F*	2R	R	 R R	

* for operation up to maximum of +70 °C R = 330 k Ω

ET Enterprises Limited 45 Riverside Way Uxbridge UB8 2YF United Kingdom tel: +44 (0) 1895 200880 fax: +44 (0) 1895 270873 e-mail: sales@et-enterprises.com web site: www.et-enterprises.com

ADIT Electron Tubes 300 Crane Street Sweetwater TX 79556 USA tel: (325) 235 1418 toll free: (800) 521 8382 fax: (325) 235 2872 e-mail: sales@electrontubes.com web site: www.electrontubes.com choose accessories for this pmt on our website

an ISO 9001 registered company

The company reserves the right to modify these designs and specifications without notice. Developmental devices are intended for evaluation and no obligation is assumed for future manufacture. While every effort is made to ensure accuracy of published information the company cannot be held responsible for errors or consequences arising therefrom.

© ET Enterprises Ltd, 2010 DS_ 9727B Issue 6 (20/09/10)